Fast Undersampled Functional Magnetic Resonance Imaging Using Nonlinear Regularized Parallel Image Reconstruction
نویسندگان
چکیده
In this article we aim at improving the performance of whole brain functional imaging at very high temporal resolution (100 ms or less). This is achieved by utilizing a nonlinear regularized parallel image reconstruction scheme, where the penalty term of the cost function is set to the L(1)-norm measured in some transform domain. This type of image reconstruction has gained much attention recently due to its application in compressed sensing and has proven to yield superior spatial resolution and image quality over e.g. Tikhonov regularized image reconstruction. We demonstrate that by using nonlinear regularization it is possible to more accurately localize brain activation from highly undersampled k-space data at the expense of an increase in computation time.
منابع مشابه
Magnetic Resonance in Medicine 71:1760–1770 (2014) Monte Carlo SURE-Based Parameter Selection for Parallel Magnetic Resonance Imaging Reconstruction
Purpose: Regularizing parallel magnetic resonance imaging (MRI) reconstruction significantly improves image quality but requires tuning parameter selection. We propose a Monte Carlo method for automatic parameter selection based on Stein’s unbiased risk estimate that minimizes the multichannel k-space mean squared error (MSE). We automatically tune parameters for image reconstruction methods th...
متن کاملMonte Carlo SURE-based parameter selection for parallel magnetic resonance imaging reconstruction.
PURPOSE Regularizing parallel magnetic resonance imaging (MRI) reconstruction significantly improves image quality but requires tuning parameter selection. We propose a Monte Carlo method for automatic parameter selection based on Stein's unbiased risk estimate that minimizes the multichannel k-space mean squared error (MSE). We automatically tune parameters for image reconstruction methods tha...
متن کاملMR Image Reconstruction Using Block Matching and Adaptive Kernel Methods
An approach to Magnetic Resonance (MR) image reconstruction from undersampled data is proposed. Undersampling artifacts are removed using an iterative thresholding algorithm applied to nonlinearly transformed image block arrays. Each block array is transformed using kernel principal component analysis where the contribution of each image block to the transform depends in a nonlinear fashion on ...
متن کاملFast image reconstruction with L2-regularization.
PURPOSE We introduce L2-regularized reconstruction algorithms with closed-form solutions that achieve dramatic computational speed-up relative to state of the art L1- and L2-based iterative algorithms while maintaining similar image quality for various applications in MRI reconstruction. MATERIALS AND METHODS We compare fast L2-based methods to state of the art algorithms employing iterative ...
متن کاملParallel spectroscopic imaging reconstruction with arbitrary trajectories using k-space sparse matrices.
Parallel imaging reconstruction has been successfully applied to magnetic resonance spectroscopic imaging (MRSI) to reduce scan times. For undersampled k-space data on a Cartesian grid, the reconstruction can be achieved in image domain using a sensitivity encoding (SENSE) algorithm for each spectral data point. Alternative methods for reconstruction with undersampled Cartesian k-space data are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011